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A model for nearly parallel vortex filaments

In a 3D homogeneous incompressible fluid a vortex filament is a a vortex
tube with infinitesimal cross section: the vorticity is a singular measure
supported along a curve in R3.

Klein-Majda-Damodaran 95: for N vortex filaments nearly parallel to e3

parametrized by
(xj(t, σ), yj(t, σ), σ),

of circulation Γj , the evolution of Ψj(t, σ) = xj(t, σ) + iyj(t, σ) is
modeled by the 1-D Schrödinger systemi∂tΨj + Γj∂

2
σΨj +

∑
k 6=j

Γk
Ψj −Ψk

|Ψj −Ψk |2
= 0, 1 ≤ j ≤ N .

In the case of exact parallel filaments, Ψj(t, σ) = Xj(t), we get the
evolution of point vortex systemi∂tXj +

∑
k 6=j

Γk
Xj − Xk

|Xj − Xk |2
= 0, 1 ≤ j ≤ N .
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Some results on the point vortex system dynamics

Γj > 0 global existence using conservation laws,

N=2, global existence since |X1(t)− X2(t)| is conserved,
(X1(t),X2(t)) rotate or translate,

N=3 explicit collapse for certain configurations: shrinking turning
triangle, Aref 79,

N=3 vortex points placed at the vertices of an equilateral triangle
rotate or translate,

N=3 vortex placed at the ends and the middle of a segment, Γj = Γ,
rotate or translate,

vortex points placed at the N ≥ 4 vertices of a regular polygon,
Γj = Γ, rotate,

also the vertices of regular polygons, with Γj = Γ, together with the
center of the polygon form a relative equilibrium configuration,

Kelvin’s conjecture 1878: the polygon configuration is stable iff
N ≤ 7, Novikov 75, Kurakin-Yudovich 02.
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Results on the nearly parallel vortex filaments

On perturbations of exact parallel filaments, Ψj(t, σ) = Xj(t) + uj(t, σ):

Klein-Majda-Damodaran 95:
N = 2, the linearized system is stable if Γ1/Γ2 > 0 and unstable if
Γ1/Γ2 < 0. Numerical computations on the perturbations suggest
global existence in the first case and collision in the second.

Kenig-Ponce-Vega 03:
∀N local existence for any (Xj(0)) and small H1 perturbations
(uj(0)), existence time & | log(Σ‖uj(0)‖H1 )|.
N = 2 global existence for any (Xj(0)), Γj = Γ > 0.

N = 3 global existence for (Xj(0)) equilateral triangle, Γj = Γ > 0.

The global existence proofs are based on

|Xj(t)− Xk(t)| = d ,∀ 1 ≤ j 6= k ≤ N

which insures the conservation of the energy E(t)

Σ
∫
|∂σΨj(t, σ)|2 dσ + Σ

∫
− ln

(
|Ψjk (t,σ)|2
|Xjk (t)|2

)
+
(
|Ψjk (t,σ)|2
|Xjk (t)|2 − 1

)
dσ.

The solutions satisfy 3
4 ≤

|Ψj (t,σ)−Ψk (t,σ)|
|Xj (t)−Xk (t)| ≤

5
4 .
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Results on the nearly parallel vortex filaments

Theorem (B-M 11)

N = 4 global existence for (Xj(0)) vertices of a square centered at 0,
Γj = Γ > 0 and (Ψ1 + Ψ3)(0, σ) = (Ψ2 + Ψ4)(0, σ) = 0 ∀σ.

N = 4 local existence for (Xj(0)) vertices of a square, Γj = Γ > 0,

existence time & min{E(0)−
1
4 Σ‖uj(0)‖−

1
2

L2 , E(0)−
1
3 } with

E(0) . Σ‖uj(0)‖2
H1 .

The solutions satisfy 3
4 ≤

|Ψj (t,σ)−Ψk (t,σ)|
|Xj (t)−Xk (t)| ≤

5
4 .

the rhombus shape are conserved since (−Ψ3,−Ψ4,−Ψ1,−Ψ2) is
also solution,

for global ∃ the inertia centrum satisfies
∑

Ψj(t, σ) =
∑

Xj(t) = 0,

∀T there are perturbations on [0,T ], with E(0)� 1 ∼ Σ‖uj(0)‖2
H1 ,

|Xj(t)− Xk(t)| conserved, but not the same.
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Results on the nearly parallel vortex filaments

Let (Xj(t)) be the vertices of a rotating regular polygon of radius 1 (with
or without its center). We consider dilation-rotation type perturbations
that preserve the polygonal shape ∀t, σ,

Ψj(t, σ) = Xj(t)Φ(t, σ).

Theorem 2 (B-M 11)

If Φ(0)− 1 is small in H1 then we have global existence and
3
4 ≤

|Ψj (t,σ)−Ψk (t,σ)|
|Xj (t)−Xk (t)| = |Φ(t, σ)| ≤ 5

4 , Ψj(t, σ)
|σ|→∞−→ Xj(t).

If E(0) = 1
2

∫
|∂σΦ(0)|2 + ω

2

∫ (
|Φ(0)|2 − 1− ln |Φ(0)|2

)
is small

then we have global existence and 3
4 ≤

|Ψj (t,σ)−Ψk (t,σ)|
|Xj (t)−Xk (t)| ≤

5
4 .

Moreover, if Φ(0, σ)
|σ|→∞−→ 1 then Ψj(t, σ)

|σ|→∞−→ Xj(t).
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Results on the nearly parallel vortex filaments

Gross-Pitaevskii type dynamics for the perturbation Φ

i∂tΦ + ∂2
σΦ + ω

Φ

|Φ|2
(1− |Φ|2) = 0,

with ω ∈ R+∗ the rotating speed of the point vortices,

conservation of the energy

E(t) =
1

2

∫
|∂σΦ(t)|2 +

ω

2

∫ (
|Φ(t)|2 − 1− ln |Φ(t)|2

)
.

the energy space contains small rotation type perturbations and grey
solitons (finite energy travelling waves of G-P),

existence of travelling waves,

in progress: collisions,

for shift type perturbations Ψj(t, σ) = Xj(t) + u(t, σ), linear
Schrödinger dynamics.
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Proof of Theorem 2

Lemma 1

Energy E(t) small enough implies ‖|Φ(t)|2 − 1‖L∞ ≤ 1
4 .

The function f (x) = x − 1− log x is positive and convexe, and vanishes

only at x = 1. If ∃σ0 such that |Φ(t, σ0)| >
√

5
4 then

|Φ(t, σ)| ≥ |Φ(t, σ0)|+ |
∫ σ
σ0
∂xΦ(t, x)dx | ≥

√
5
4 −

√
2E(Φ(t))|σ − σ0|,

and |Φ(t, σ)| >
√

9
8 sur I = [σ0 − 1

500 E(t) , σ0 + 1
500 E(t) ]. Finally,

E(t) ≥ 1

2
f

(
9

8

)
|I | =

1

1000 E(t)
f

(
9

8

)
,

contradiction for E(t) small enough.
Since 1

2 (x − 1)2 ≤ x − 1− ln x ≤ 10(x − 1)2 on [ 3
4 ,

5
4 ] we have:

Lemma 2

‖|Φ(t)|2 − 1‖L∞ ≤ 1
4 implies the comparaison of the energies:

EGP(t) = 1
2‖∂σΦ(t)‖2

L2 + ω
4 ‖Φ(t)|2 − 1‖2

L2 ≤ E(t) ≤ 5 EGP(t).
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Proof of Theorem 2: resolution in 1 + H1

Similar arguments for Gross-Pitaevskii in 1 + H1 (Béthuel-Saut 99,
B-Vega 08) : We first solve locally the Schrödinger-type equation
satisfied by u(t) = Φ(t)− 1.

Since Φ(0)− 1 is small in H1, Lemma 2 and Gagliardo-Niremberg imply
E = E(0) small. Then, by Lemma 1, the quotient 1

|Φ(t)|2 will remain

uniformly bounded.

The existence time will then depend on the H1 norm of u(t). The Ḣ1

norm stays bounded in time by the energy, and the L2 norm satisfies

∂t

∫
|u(t)|2 = =ω

∫
1 + u(t)

|1 + u(t)|2
(1− |1 + u(t)|2)u(t)

= =ω
∫

(1− |1 + u(t)|2)u(t)

|1 + u(t)|2
≤ |ω|‖1−|Φ(t)|2‖L2‖u(t)‖L2 ≤ |ω|2

√
E‖u(t)‖L2 ,

so ‖u(t)‖L2 . t. By re-iterating the local in time argument we get the
global existence.
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Proof of Theorem 2: resolution in the energy space

Similar arguments for Gross-Pitaevskii in the energy space (Zhidkov 87,
Gérard 06) : We solve locally in time by a fixed point argument for the
operator

A(w)(t) = ω
∫ t

0
e i(t−τ)∂2

τ
e iτ∂

2
σΦ(0)+w(τ)

|e iτ∂2
σΦ(0)+w(τ)|2

(
1− |e iτ∂2

σΦ(0) + w(τ)|2
)
, on

sup0≤t≤T ‖w(t)‖H1 ≤ ε.

By Lemma 1, |Φ(0)| ≥
√

3
2 .

On the other hand, since the symbol of e it∂
2
σ − 1 is e−itξ2

−1
ξ ξ,

‖e iτ∂2
σΦ(0)− Φ(0)‖H1 ≤ C (1 + τ

1
2 )‖∂σΦ(0)‖L2 ≤ C (1 + τ

1
2 )
√
E .

By taking ε,T small with respect to E , 1

|e iτ∂2
σΦ(0)+w(τ)|2

will stay

uniformly bounded.

We obtain ‖A(w)(t)‖H1 ≤ C (ε)t(C +
√
E), and we deduce the existence

of a local solution for ε,T small with respect to E .

By re-iterating the local in time argument we get the global existence.
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Proof of Theorem 1: local existence K-P-V

For a a perturbation uj,0(σ) = Ψj(0, σ)− Xj(0) small in H1 ∃T ∗ ∈]0,∞]
maximal time such that on [0,T ∗[×R

3

4
|Xj(t)− Xk(t)| < |Ψj(t, σ)−Ψk(t, σ)| < 5

4
|Xj(t)− Xk(t)|,

so for T ≤ T ∗ the fixed point operator can be bounded by

Σ‖A(uj)‖L∞([0,T ],H1) ≤ Σ‖uj,0‖H1 + C (|Xkl |)T Σ‖uj‖L∞([0,T ],H1).

For T small enough we obtain on [0,T ] a solution (uj) such that

Σ‖uj‖L∞([0,T ],H1) ≤ 2Σ‖uj(0)‖H1 .

The solution can be extended -although the H1 norm might grow- on
[0,T ∗] with | log(Σ‖uj(0)‖H1 )| . T ∗. For showing the global existence it
is enough to get, if T ∗ is supposed finite, the contradiction

3

4
|Xj(T

∗)− Xk(T ∗)| < |Ψj(T
∗, σ)−Ψk(T ∗, σ)| < 5

4
|Xj(T

∗)− Xk(T ∗)|.
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Proof of Theorem 1: towards global existence K-P-V

The following quantities are conserved

H =
∑
j

∫
|∂σΨj(t, σ)|2 dσ −

∑
j 6=k

∫
ln

(
|Ψjk(t, σ)|2

|Xjk |2(t)

)
dσ,

A =
∑
j

∫ (
|Ψj(t, σ)|2 − |Xj(t)|2

)
dσ,

T =
∑
j 6=k

∫ (
|Ψjk(t, σ)|2 − |Xjk(t)|2

)
dσ.

Let

I(t) =
∑
j 6=k

∫ (
|Ψjk(t)|2

|Xjk(t)|2
− 1

)
dσ.

Since − ln(x) + (x − 1) ≥ 1
2 (x − 1)2 for x ∈

[
3
4 ,

5
4

]
, on [0,T ∗] we have

E(t) = H+ I(t) ≥ 1

2

∑
j 6=k

∥∥∥∥ |Ψjk(t)|2

|Xjk(t)|2
− 1

∥∥∥∥2

L2

+
∑
j

‖∂σΨj(t)‖2
L2 .
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Proof of Theorem 1: towards global existence K-P-V

By Gagliardo-Niremberg, on [0,T ∗],∥∥∥∥ |Ψjk(t, σ)|2

|Xjk(t)|2
− 1

∥∥∥∥
L∞
≤ CE(t)

1
2
‖Ψjk(t)‖

1
2

L∞E(t)
1
2

|Xjk(t)|
≤ CE(t),

so if E(t) stays small enough on [0,T ∗] then |Ψjk(t, σ)| is close enough
to |Xjk(t)| such that

3

4
|Xj(T

∗)− Xk(T ∗)| < |Ψj(T
∗, σ)−Ψk(T ∗, σ)| < 5

4
|Xj(T

∗)− Xk(T ∗)|,

which is the contradiction that implies the global existence.

In the (K-P-V) cases, |Xjk(t)| = d so E(t) = T
d is conserved, and global

existence is obtained for small E(0).

Actually, in the cases of Theorem 2, E(t) = E(Φ(t)) is conserved and the
global existence in 1 + H1 can be obtained also this way.
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Proof of Theorem 1

Control of E(t) :

E(t) = −H+
1

2
T − A+

1

2
(‖u1(t) + u3(t)‖2

L2 + ‖u2(t) + u4(t)‖2
L2 ).

 E(t) conserved and implies global existence for rhombus type
perturbations,

 for general perturbations

|E(t)| ≤ |E(0)|

+t2 sup
τ∈[0,t]

|E(τ)| 32 (Σ‖uj(0)‖L2 + t sup
τ∈[0,t]

|E(τ)| 12 ),

so T ∗ & min

{
1√

E(Φ(0))
1
2 Σ‖uj (0)‖L2

, 1

E(0)
1
3

}
.
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